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ABSTRACT
As it becomes prevalent that user information exists in multiple

platforms or services, cross-domain recommendation has been an

important task in industry. Although it is well known that users

tend to show different preferences in different domains, existing

studies seldom model how domain biases affect user preferences.

Focused on this issue, we develop a casual-based approach to miti-

gating the domain biases when transferring the user information

cross domains. To be specific, this paper presents a novel debias-

ing learning based cross-domain recommendation framework with

causal embedding. In this framework, we design a novel Inverse-

Propensity-Score (IPS) estimator designed for cross-domain sce-

nario, and further propose three kinds of restrictions for propensity

score learning. Our framework can be generally applied to various

recommendation algorithms for cross-domain recommendation.

Extensive experiments on both public and industry datasets have

demonstrated the effectiveness of the proposed framework.

CCS CONCEPTS
• Information systems → Collaborative filtering.
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1 INTRODUCTION
Nowadays, recommender system plays an important role in e-

commerce platforms, such as Amazon and Taobao. Traditional

collaborative filtering methods recommend items to users based

on their historical rating or click behaviors in a single domain

[9, 24, 37, 47]. With the development of e-commerce platform busi-

ness, users may have behaviors in different domains. For example, in

Taobao, there are multiple business domains with different domain

settings, containing Gouwuche (purchase-guided domain setting),

Shoucai (exploration-guided domain setting), and so on. As the vari-

ety of web services has increased, user information can be obtained

from their activities in other services. Therefore, cross-domain rec-

ommender system has gained research attention in recent years.

Compared with single-domain scenarios, the major challenge of

cross-domain recommendation is that the users in different domains

tend to have varied behavioral patterns [10] or different selection

preferences [48]. Therefore, it is difficult to transfer useful infor-

mation across domains and learn a comprehensive user preference.

In the literature, various methods have been proposed for tackling

this challenge [3, 29, 40]. Existing methods mainly focus on how

to learn effective information representations that are transferable

across domains. The basic idea is to bridge the semantic gap be-

tween different domains with shared parameters [3, 40], feature

mapping [10] or semantic space alignment.

Liquid foundation
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Maybelline

109 (cheap)

Liquid foundation
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Chanel

600 (expensive)

Gouwuche ShoucaiDomain

Product

Seller

Brand
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Figure 1: Examples of two items with different tastes pur-
chased by a Taobao user in two domains.
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Although these methods have largely improved the performance

of cross-domain recommendation, they have not explicitly mod-

eled why and how user preferences change across domains. Con-

sequently, it is unable to accurately capture real user preference

in general or with respect to a specific domain. To see this, Figure 1

presents a real user in Taobao with her click behaviors on the ap-

plications of Gouwuche and Shoucai (i.e., two domains). The user

has exposed (in public profile) her own general preferences “Liquid

foundation sold by Sephora” about cosmetics. However, she has

different behaviors in the two domains. In Gouwuche, she clicked

a Maybelline’s cheap foundation (the left figure), while in Shoucai,

she clicked a Chanel’s expensive foundation (the right figure). We

argue that such preference differences are caused by underlying

domain bias, i.e., user’s sense of item attributes may vary due to

domain factors. As introduced before, Gouwuche (purchase-guided

domain setting) and Shoucai (exploration-guided domain setting)

indeed have special marketing strategies and target on different

scenarios. To solve the above issue, the core problem becomes how
to mitigate the biases yielded in current domain when transferring
the user information cross domains to improve recommendation?

From the causal perspective, the domain biases are caused by

the existence of the domain-specific confounders, which are the

variables/factors affecting both the user preference and the user

behavior. In the example of Figure 1, domain setting can be consid-

ered as a latent domain-specific confounder. The domain-specific

confounders bring two kinds of biases: user preference bias and

data selection bias [39]. The user preference is biased as it is di-

rectly affected by the domain-specific confounders. For example,

in Gouwuche, the user’s general preference “liquid foundation” is

changed to “Maybelline’s cheap liquid foundation”, due to the effect

of its purchase-guided domain setting. Then the preference bias

further causes the data selection bias, which means most user-item

interactions in the observed data are related to user-preferred items

in the specific domain. For example, in Gouwuche, most of the inter-

actions in observed dataset are affordable items. While, in Shoucai

domain, most of them are gorgeous and fashionable items. It would

incorporate such domain bias if directly transferring the behaviors

in Gouwuche to Shoucai.

In light of the above causal view, we propose a novel propen-

sity score based cross-domain framework. Propensity score, which

denotes the user preference strength to an item [38], is widely

adopted to solve the bias in single domain by re-weighting each

transaction in the observed data. We first design a novel Inverse-

Propensity-Score (IPS) estimator, which generalizes the traditional

IPS estimator to the cross-domain scenarios. Due to the difficulty

in estimating the propensity score via statistical methods in cross-

domain scenario, we design three restrictions to learn the propen-

sity score. Our approach can effectively eliminate the domain biases,

and characterize user preference in a more accurate way. Overall,

our contributions are that: (1) Correct the data selection bias in

cross-domain scenarios by generalized propensity score; (2) Propose

a novel way to estimate the propensity score when domain-specific

confounders are unobserved; (3) Model the user preference shift in

different domains by propensity score to handle preference bias.

With this general framework, various recommendation methods

can be extended for cross-domain recommendation.

To the best of our knowledge, it is the first time that debiasing

learning has been applied to cross-domain recommendation. To

validate the effectiveness of the proposed framework, we conduct

a series of experiments on both public dataset from Amazon and

industry dataset from Taobao. Experimental results under different

metrics confirm that the proposed framework outperforms the

state-of-the-art methods for cross-domain recommendation.

2 RELATEDWORK
In this section, we discuss related work that are close to our work.

Cross-domain Recommendation. Cross-domain recommenda-

tion task aims to leverage information from other domains to help

the recommendation in target domain. Traditional methods us-

ing collaborative filtering (CF) can be divided into two categories,

namely aggregating the knowledge among domains and transfer-

ring knowledge from source domain to target domain. In the first

category, most of them conduct their research based on matrix fac-

torization (MF) [3, 40]. Furthermore, some researchers consider that

different users in different domains have different behavior patterns

[4, 26, 29, 44]. So they jointly learn the shared cross-domain fea-

tures and domain-specific features by using LDA [4], probabilistic

factorization generative model [44] and social network [26]. Some

researchers propose to transfer knowledge from source domain

to target domain by utilizing the overlapped part as a bridge to

link the domains [20]. Since traditional methods have difficulties

in learning complex user-item interactions, deep learning based

methods have been proposed [10, 11, 16, 25, 31]. Among them, user

privacy issue has been considered [11] by only using the item in-

formation for cross-domain recommendation. They learn the item

embeddings in source domain by CF and transfer them to target

domain with attention mechanism. These works only reduced the

influence of the source domain during the fine-tuning of the target

domain, but did not accurately determine the confounding factors

contained in the migrated information.

Debias in Recommender System. Although recent years have

witnessed the rapid growth of works on recommender systems

(RS), most studies focus on designing machine learning models to

better adapt to user behavior data. However, user behavior data is

observational. This leads to widespread bias in the data, including

selection bias [15] in explicit feedback data, position bias [21] and

exposure bias [35] in implicit feedback data and popularity bias

[1]. A large number of methods have been proposed to eliminate

the biases. Some researchers propose to mitigate selection bias by

propensity score [39], ATOP [41] and data imputation [8, 15, 32, 33].

Exposure bias can be mitigated in evaluation [28], model training

[30, 42, 46] and sampling [6, 43]. Recently, some researchers provide

a survey [7] summarizing seven types of biases in recommendation,

along with their definitions and characteristics. However, all of

these works do not consider the biases that are produced in cross-

domain scenario and how to mitigate the impact of domains.

3 PRELIMINARY
In this section, we first introduce the task definition of cross-domain

recommendation, and then introduce the background about causal.
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(b) Three restrictions in our method.

Figure 2: The causal graph and three restrictions in our proposed method. (DSC means domain-specific confounder, e.g.,
purchase-guided marketing strategy. GC means general confounder, e.g., the display position.)

3.1 Problem Definition
Assume that we have a set of domains, users and items, denoted

by D, U and I respectively, where 𝑑 ∈ D denotes a domain,

𝑢 ∈ U denotes a user and 𝑖 ∈ I denotes an item. The numbers of

domains, users and items are denoted as 𝐷 , 𝑈 and 𝐼 . In our setting,

there exist a number of overlapped users. While, we do not make

specific assumption about overlapped items. Instead, the items from

different domains share the same attribute set J . Formally, each

item 𝑖 is associated with attributes J𝑖 = { 𝑗1, ..., 𝑗𝑚}, where J𝑖 ⊂ J .

For example, an item has attributes containing category, seller,

brand and price. Given a user 𝑢, suppose there are two kinds of

preference representations (𝑘-dimensional vectors), namely general
preference 𝒗𝑢 ∈ R𝑘 , which is shared among different domains, and

domain-specific preference 𝒗𝑑𝑢 ∈ R𝑘 , which is affected by domain-

related factors.

Based on the above notations, we now define the task of cross-

domain recommendation task. Formally, given the user 𝑢 and the

attributes J𝑖 of each item 𝑖 and its corresponding domain 𝑑 , we

aim to learn the user’s general preference 𝒗𝑢 debiased from the

preference that is affected by domain 𝒗𝑑𝑢 and better predict the

user’s behaviour 𝑦𝑢𝑖 . And the debiased 𝒗𝑢 can be transferred to

other domains to help domain-specific recommendation.

3.2 Causal Background

Causal Graph. A causal graph, denoted as G, is a directed acyclic

graph (DAG) which describes the causal relationships between

variables [36]. G = ⟨R, E⟩ where R is a set of random variables

and E is the set of edges with each edge 𝑟𝑖 → 𝑟 𝑗 representing 𝑖-th

variable 𝑟𝑖 is a direct cause of 𝑗-th variable 𝑟 𝑗 .

Propensity Score. In causal inference, the propensity score is de-

fined as the probability of an individual being assigned to a specific

treatment [38]. In the recommender system, the treatment can be

viewed as being given one specific item. Then, the propensity score

is the marginal probability of observing a user’s rating or clicking

behavior on a certain item [39], which to a certain degree, reflects

the user’s preference strength to this item. In single-domain rec-

ommendation, propensity score is commonly adopted to handle

the selection bias. Specifically, each observation is weighted by

its inverse propensity to obtain the unbiased estimation of perfor-

mance measure [7, 39, 45]. To model cross-domain preference bias,

we introduce the propensity score 𝑝𝑢 𝑗𝑑 , which can be viewed as a

preference degree of user 𝑢 for attribute 𝑗 in domain 𝑑 . It captures

domain-related confounders to a certain extent.

Cross-domain Bias. The cross-domain biases, including user pref-

erence bias and data selection bias, are caused by the domain-

specific confounders in the cross-domain recommender system.

In causal inference, the confounder, narrowly speaking, refers to

the variables that are the common causes of two variables [18]. In

our scenario, they are the variables that affect both the user pref-

erence and the user behavior. As the example in Figure 1 shows,

the domain setting is a latent domain-specific confounder, where

purchase-guided domain setting and exploration-guided domain

setting are adopted by Gouwuche and Shoucai, respectively. Influ-

enced by different domain settings, the sample user adapts general

preference “liquid foundation” to “Maybelline’s cheap foundation”

or “Chanel’s expensive foundation” in the two domains accordingly.

Such preference shifts directly brought by the domain-specific con-

founders are named as preference bias. The preference shift further
causes the data selection bias, as users select products according to

different preferences across domains.

4 METHODOLOGY
In this section, we present our debiasing learning framework with

causal embedding for the cross-domain recommendation task.

4.1 Overview
Wefirst construct a causal graph to analyze user behavior in Figure 2.

User behaviors in recommender system are biased, which is caused

by various confounders, including domain-specific confounders

(DSC) and general confounders (GC). Domain-specific confounders,

such as the purchase-guided marketing strategy, only affect the user

preference in one specific domain. In contrast, general confounders,

such as the display position, are domain-shared confounders that

have influence to all domains. In our case, we focus on solving the

cross-domain selection bias brought by domain-specific confounders.

Because we solve the task from the perspective of causal, the embed-

ding of users and item attributes are also called causal embedding.

In order to learn the cross-domain confounders, consider such a

scenario: regard the item attribute 𝑗 in domain 𝑑 given to user 𝑢 as

a treatment, and whether the user likes it as an outcome 𝑦. We aim

to model the confounders in the treatment and eliminate the biases

in cross-domain learning.
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Wefirst propose a novel Inverse-Propensity-Score (IPS) estimator

in Section 4.2, which generalizes the traditional IPS estimator [27]

to the cross-domain scenarios. Furthermore, to address the diffi-

culty of propensity score estimation in our cross-domain scenarios,

three restrictions are proposed to estimate the propensity score in

Section 4.3. Then we will introduce our training process and some

discussion in Section 4.4.

4.2 IPS Estimator for Cross-domain Debiasing
In this part, we propose a novel Inverse-Propensity-Score (IPS)

estimator, which generalizes the traditional IPS estimator to the

cross-domain scenarios. We first introduce how to estimate the

recommendation accuracy on all domains with user’s information

and item’s attribute information. Then we present the proposed

novel Inverse-Propensity-Score (IPS) estimator in cross-domain

scenarios.

4.2.1 Recommendation Accuracy Estimator. In recommender sys-

tem, the ideal measure of evaluating how well a predicted 𝑌 reflects

the true ratings or click through rate in 𝑌 is:

𝑅(𝑌 ) = 1

𝑈 · 𝐽 · 𝐷

𝑈∑
𝑢=1

𝐽∑
𝑗=1

𝐷∑
𝑑=1

𝛿 (𝑦,𝑦)

=
1

𝑈 · 𝐽 · 𝐷

𝑈∑
𝑢=1

𝐽∑
𝑗=1

𝐷∑
𝑑=1

𝛿 (𝑓 (𝒗𝑢 , 𝒗𝑑𝑗 ), 𝑦),

(1)

where 𝒗𝑢 is the user embedding and 𝒗𝑑
𝑗
is the embedding of the 𝑗-th

attribute of item in domain 𝑑 , 𝑓 (·) is the recommendation method

like Factorization Machine (FM) or DeepFM, and 𝛿𝑢,𝑖 (𝑦,𝑦) is the
error measure, which can be Mean Absolute Error (MAE), Mean

Squared Error (MSE), or Binary Cross Entropy (BCE).

It’s worth noting that, the above the measure is unable to calcu-

late directly due to the missing data. The conventional practice is

to estimate 𝑅(𝑌 ) using the average over only the observed data:

𝑅naive (𝑌 ) =
1

|O𝑑𝑎𝑡𝑎 |
∑

⟨𝑢,𝑗,𝑑 ⟩∈O𝑑𝑎𝑡𝑎

𝛿 (𝑓 (𝒗𝑢 , 𝒗𝑑𝑗 ), 𝑦), (2)

where O𝑑𝑎𝑡𝑎 = {⟨𝑢, 𝑗, 𝑑⟩ : 𝑇𝑢 𝑗𝑑 = 1} and𝑇𝑢 𝑗𝑑 = 1 indicates ⟨𝑢, 𝑗, 𝑑⟩
is observed. Following [39], we call this the naive estimator.

However, 𝑅naive (𝑌 ) is not an unbiased estimate of the true per-

formance 𝑅(𝑌 ) because of the selection bias. As shown in Figure 2,

the confounders, i.e., domain-specific confounder DSC and gen-

eral confounder GC, affect both the users’ preferences and the

ratings/clicking behaviors in different domains. Therefore, the ob-

served data suffers from selection bias.

4.2.2 Proposed Novel IPS Estimator. To address the selection bias,

we propose our designed Inverse-Propensity-Scoring estimator for

cross-domain recommendation task. According to [19], the key to

handling selection bias is to understand the process of generat-

ing observation patterns, which is typically called the Assignment
Mechanism in causal inference. Following [39], we assume that the

assignment mechanism is probabilistic. We set 𝑝𝑢 𝑗𝑑 = 𝑃 (𝑇𝑢 𝑗𝑑 = 1)
as the propensity score, which is the probability of occurrence in-

troduced in Section 3. Then the Inverse-Propensity-Scoring (IPS)

estimator is defined as:

𝑅IPS (𝑌 |𝑃) =
1

𝑈 · 𝐽 · 𝐷
∑

⟨𝑢,𝑗,𝑑 ⟩∈O𝑑𝑎𝑡𝑎

𝛿 (𝑓 (𝒗𝑑𝑢 , 𝒗𝑑𝑗 ), 𝑦)
𝑝𝑢 𝑗𝑑

, (3)

Different from the naive estimator 𝑅𝑛𝑎𝑖𝑣𝑒 (𝑌 ), the IPS estimator

is unbiased for any probabilistic assignment mechanism:

𝐸𝑇 [𝑅IPS (𝑌 |𝑃)]

=
1

𝑈 · 𝐽 · 𝐷
∑
𝑢

∑
𝑗

∑
𝑑

𝐸𝑇𝑢𝑗𝑑
[
𝛿 (𝑓 (𝒗𝑑𝑢 , 𝒗𝑑𝑗 ), 𝑦)

𝑝𝑢 𝑗𝑑
𝑇𝑢 𝑗𝑑 ]

=
1

𝑈 · 𝐽 · 𝐷
∑
𝑢

∑
𝑗

∑
𝑑

𝛿 (𝑓 (𝒗𝑑𝑢 , 𝒗𝑑𝑗 ), 𝑦) = 𝑅(𝑌 ) .

(4)

Consequently, the proposed IPS estimator can eliminate the se-

lection bias during the training process.

4.3 Cross-domain Propensity Score learning
In previous studies of learning propensity score [39], the propensity

score is estimated via statistical methods based on the observed

factors related to user preference to a specific item. However, in

our task, the user preference is biased in different domains and

few of the domain factors that related to appearance of a user-item

interaction in a certain domain are observed. Furthermore, as the

user-item interaction expands into three dimensions of user-item-
domain, the data sparsity problem becomesmore serious. As a result,

the number of missing data increases, leading to more inaccurate

estimates of the propensity score. Therefore, it is difficult to estimate

the propensity score in the same statistical way [39].

To overcome this challenge, we notice that propensity score has

multiple meanings: it is the weighting parameter for debiasing in

the estimator; meanwhile, by the definition of the propensity score,

it also indicates the user preference. Accordingly, we design three

restrictions to reduce the uncertainty in estimator level, domain

level, and individual level, respectively. The three restrictions esti-

mate the propensity score by exploring the role of propensity as

the weighting parameter in estimator level and as the indicator of

user preference in the domain and individual level.

4.3.1 Restriction in Estimator Level. In the estimation, the propen-

sity score serves as the weighting parameter for debiasing. After

debiasing by inverse propensity score weighting, the biased esti-

mation is equal to the unbiased estimation. Motivated by this fact,

we have:

𝛿 (𝑓 (𝒗𝑑𝑢 , 𝒗𝑑𝑗 ), 𝑦)
𝑝𝑢 𝑗𝑑

= 𝛿 (𝑓 (𝒗𝑢 , 𝒗𝑑𝑗 ), 𝑦), (5)

where 𝒗𝑢 represents user’s general preferences (shared among dif-

ferent domains), 𝑝𝑢 𝑗𝑑 is the propensity score (a preference degree of

different users for different attributes of item in different domains),

and 𝒗𝑑𝑢 represents user preferences that have changed after being

affected by domain-related factors.

According to Eq. (5), the restriction of the propensity score 𝑝𝑢 𝑗𝑑
is:

𝑝𝑢 𝑗𝑑 = argmin𝑝

|D |∑
𝑑=1

_𝑑 | |
𝛿 (𝑓 (𝒗𝑑𝑢 , 𝒗𝑑𝑗 ), 𝑦)

𝑝𝑢 𝑗𝑑
− 𝛿 (𝑓 (𝒗𝑢 , 𝒗𝑑𝑗 ), 𝑦) | |

2

2
, (6)
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where _𝑑 is the weight of domain 𝑑 . Since 𝛿𝑢,𝑖 (𝑦,𝑦) and 𝑓 (𝒗𝑢 , 𝒗 𝑗 )
can be complicated, it is difficult to calculate the relationship be-

tween 𝒗𝑢 and 𝒗𝑑𝑢 . So we use neural networks to approximate the

relationship between 𝒗𝑢 and 𝒗𝑑𝑢 :

𝒗𝑢 = ReLU(𝑾3ReLU(𝑾1𝒗
𝑑
𝑢 +𝒘2𝑝𝑢 𝑗𝑑 + 𝑏1) + 𝑏2), (7)

where𝑾1,𝒘2,𝑾3, 𝑏1, 𝑏2 are trainable parameters. In other words,

we recover the user’s general preferences 𝒗𝑢 by the nonlinear com-

bination of the domain related preference 𝒗𝑑𝑢 and the propensity

score 𝑝𝑢 𝑗𝑑 .

Overall, when 𝑝𝑢 𝑗𝑑 is viewed as the weighting parameter for

debiasing, the associated loss is:

𝐿𝑜𝑠𝑠1 =

|D |∑
𝑑=1

_𝑑 | |
𝛿 (𝑓 (𝒗𝑑𝑢 , 𝒗𝑑𝑗 ), 𝑦)

𝑝𝑢 𝑗𝑑
− 𝛿 (𝑓 (𝒗𝑢 , 𝒗𝑑𝑗 ), 𝑦) | |

2

2
. (8)

4.3.2 Restriction in Domain Level. At domain level, the propen-

sity score, combined with domain-specific user embedding 𝒗𝑑𝑢 , can
recover the the general preference, as shown in 𝐸𝑞. (7). In this

manner, we can recover the general preference in each of the |D|
domains. Let 𝒗𝑢 |𝑑 denote the estimation of general preference for

user 𝑢 for domain 𝑑 (recovered by the propensity score 𝑝𝑢 𝑗𝑑 and

domain-specific user embedding 𝒗𝑑𝑢 ). Therefore, we can derive |D|
estimations for general preference: {𝒗𝑢 |𝑑 }

|D |
𝑑=1

. Naturally, the gen-

eral preferences among different domains should be similar. There-

fore, motivated by the confounder balancing strategy in causal

inference [2, 5, 13, 17], we propose to learn the propensity score by

balancing the user’s general preferences among different domains:

𝑝𝑢 𝑗𝑑 = argmin𝑝

|D |∑
𝑑=1

[𝛼𝑑 ∥ 𝒗∗𝑢 − 𝒗𝑢 |𝑑 ∥2
2
], (9)

where the confounder weights {𝛼𝑑 }
|D |
𝑑=1

is the inverse of sample

size ratio, controlling the degree of the effect of the confounders

in cross-domain, and 𝒗∗𝑢 is the mean of 𝒗𝑢 |𝑑 , which is defined as

𝒗∗𝑢 = 1/|D|∑ |D |
𝑑=1

𝒗𝑢 |𝑑 . Restricting
{
𝒗𝑢 |𝑑

} |D |
𝑑=1

similar to each other

is equivalent to making each of them close to their mean.

In a nutshell, the loss associated with the restriction at domain

level is:

𝐿𝑜𝑠𝑠2 =

|D |∑
𝑑=1

[𝛼𝑑 ∥ 𝒗∗𝑢 − 𝒗𝑢 |𝑑 ∥2
2
] . (10)

After multiple iterations, the user preferences affected by the do-

main can be separated from the user’s static preferences, and only

the user preferences shared by the domains can be transferred

across domains.

4.3.3 Restriction in Individual Level. Since propensity score 𝑝𝑢 𝑗𝑑
represents user𝑢’s preference for attribute 𝑗 in domain 𝑑 , the closer

the embeddings of two users in different domains are, the closer

the preferences of two users will be. Therefore, we use Laplacian

regularization to restrict on 𝑝𝑢 𝑗𝑑 in individual level:

𝐿𝑜𝑠𝑠𝐿 = 𝒑⊤𝑳𝒑 =
∑

𝑑1≠𝑑2

∑
𝑢1≠𝑢2

cos(𝒗𝑑1𝑢1
, 𝒗𝑑2𝑢2

) | |𝒑𝑢1𝑑1 − 𝒑𝑢2𝑑2 | |
2

2
, (11)

where 𝒑𝑢𝑑 represents the user 𝑢’s preference in domain 𝑑 , 𝒑𝑢𝑑 =

[𝑝𝑢1𝑑 , 𝑝𝑢2𝑑 , ..., 𝑝𝑢 |J |𝑑 ], and we use the cosine similarity to measure

the closeness between user embeddings. The larger the 𝑐𝑜𝑠 (𝒗𝑑1𝑢1
, 𝒗𝑑2𝑢2

),

which means the smaller the distance between 𝒗𝑑1𝑢1
and 𝒗𝑑2𝑢2

, and the

closer the 𝒑𝑢1𝑑1 and 𝒑𝑢2𝑑2 should be. In practice, we do not need

to examine all the pairs of users. For a target user, we can only

consider top similar users with him/her.

4.4 Training and Discussion
In this part, we introduce the training process and present some

discussion and analysis.

4.4.1 Training. The parameters to learn in our model include the

parameters for the recommendation function in 𝑓 (𝒗𝑑𝑢 , 𝒗𝑑𝑗 ) denoted
by Θ𝑓 and debiasing parameters {𝑝𝑢 𝑗𝑑 ,𝑾1,𝒘2,𝑾3, 𝑏1, 𝑏2} denoted
as Θ𝑑 . We learn Θ𝑓 by the proposed Inverse-Propensity-Scoring

Estimator in 𝐸𝑞. (3). The propensity score and parameters in 𝐸𝑞. (7)
are learned by integrating the three loss terms in 𝐸𝑞. (8), 𝐸𝑞. (10)
and 𝐸𝑞. (11):

𝐿 = 𝐿𝑜𝑠𝑠1 + 𝐿𝑜𝑠𝑠2 + 𝐿𝑜𝑠𝑠𝐿 . (12)

In each iteration, we first train the Θ𝑓 in each domain and

then train the Θ𝑑 across domains. The whole method is trained

with back-propagation. The training algorithm is summarized in

Appendix A.1. We will describe more implementation details in

Appendix B.

4.4.2 Discussion. In this part, we present some discussions related

to the proposed framework.

Generalizability. Notice that we propose a framework for cross-

domain recommendation task to debias the domain-specific con-

founders. In our approach, the single-domain recommendation

method 𝑓 (𝒗𝑢 , 𝒗 𝑗 ) (Eq. (3)) can be instantiated with different meth-

ods for modeling the interaction between users and item attributes.

We can also utilize this framework to solve different types of rec-

ommendation tasks by changing the evaluation measure 𝛿𝑢,𝑖 (𝑦,𝑦)
(Eq. (3)) accordingly, e.g., rating prediction or click-through-rate

prediction.

Method Analysis. In the cause and effect diagram, we hope to

find the relationship among user’s general preferences 𝒗𝑢 , user’s
preferences that have been changed due to the domain influence

𝒗𝑑𝑢 , and domain-specific confounders DSC. We have established an

implicit relationship in 𝐸𝑞. (5). However, it is difficult to be under-

stood by involving generalized recommendation method 𝑓 (𝒗𝑢 , 𝒗 𝑗 )
and evaluation measure 𝛿𝑢,𝑖 (𝑦,𝑦). Here, we present a more intuitive

analysis with matrix factorization. Suppose 𝑓 (𝒗𝑢 , 𝒗 𝑗 ) = 𝒗⊤𝑢 · 𝒗 𝑗 and
𝛿𝑢,𝑖 (𝑦,𝑦) = (𝑦𝑢,𝑖 − 𝑦𝑢,𝑖 )2. Then 𝐸𝑞. (5) can be written as:

(𝒗𝑑⊤𝑢 · 𝒗 𝑗 − 𝑦)2

𝑝𝑢 𝑗𝑑
= (𝒗⊤𝑢 · 𝒗 𝑗 − 𝑦)2, (13)

Fix the user 𝑢 and domain 𝑑 , Eq. (13) should hold for all item

attribute 𝑗 . So differentiate 𝒗 𝑗 on both sides, we obtain:

𝒗𝑑𝑢 = ±
√
𝑝𝑢 𝑗𝑑 · 𝒗𝑢 . (14)

The above equation gives an intuitive relationship between user’s

general preferences 𝒗𝑢 and domain-specific preference 𝒗𝑑𝑢 .
√
𝑝𝑢 𝑗𝑑

represents the extent to which users are affected in domain 𝑑 and

change their preferences towards item attributes 𝑗 . The sign in the

equation represents the direction of preferences user have changed.

Furthermore,
√
𝑝𝑢 𝑗𝑑 is responsible for eliminating biases produced
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by domains from user’s general preferences. And 𝒗𝑢 plays an im-

portant role in transferring information across domains by Eq. (9).

Complexity Analysis. The time complexity for optimizing the

parameters through IPS estimator depends on the recommendation

method we choose. For example, the time complexity for FM is

𝑂 (𝑘 𝐽 2 · |O|), where 𝑘 is the dimension of user and item attribute

embeddings, O is the set of observed data. The time complexities

for the estimator restriction, domain level restriction and individual

restriction can be roughly estimated as 𝑂 ( |O| · 𝐽 ), 𝑂 (𝑈 · 𝐷) and
O(𝑈 · 𝐷). In practice, 𝐷 and 𝐽 is far less than |O|, so that the time

complexity is similar to the typical latent factors models. The model

parameters include user embeddings, item attribute embeddings

and propensity scores. The size of propensity scores 𝑃 is𝑈 · 𝐽 · 𝐷 .
In total, the size of model parameters is linear with the input size

and is close to the size of typical latent factors models. Indeed, we

do not need to train the parameters of 𝑓 (𝒗𝑑𝑢 , 𝒗𝒅𝒋 ) in each domain

serially through IPS estimator, so that we can train Θ𝑓 in parallel.

5 EXPERIMENTS
In this section, we conduct experiments to validate the effectiveness

of the proposed framework for cross-domain recommendation.

Table 1: Statistics of datasets after preprocessing.

Dataset Domain #user/overlapped #item #interaction

Amazon

CD 50,277/19,626 27,344 761,171

Movie 97,973/42,048 32,689 1,975,835

Book 830,854/46,226 276,899 17,570,584

Taobao

Gouwuche 12,588/7,882 78,996 115,152

Sousuo 106,222/104,198 464,904 1,121,270

Shoucai 107,589/104,225 559,796 1,786,916

5.1 Experimental Setup
5.1.1 Datasets. We use both public and industry datasets for eval-

uation.

• Amazon Dataset [34] contains product metadata from Ama-

zon, including (user, item, rating) tuples and product metadata (cate-

gory information, price, brand) from different domains. We perform

a cross-domain rating prediction task on this dataset. We choose

three relevant domains to test the debias effect of our method,

namely, CD (named "CDs and Vinyl" in Amazon), Movie (named

"Movies and TV" in Amazon) and Book.
• Taobao Dataset collects user behaviors from Taobao’s recom-

mender systems. In our experiment, we only use the click behaviors

and the product metadata (category information, seller, brand and

price). We perform a cross-domain click-through-rate prediction

task on this dataset. Similarly, we choose three relevant applications

as domains, namely, Gouwuche, Sousuo and Shoucai. In Gouwuche,
users prefer recommendations based on their previously bought

products. In Sousuo, users usually want to see the products that

match their keywords better. In Shoucai, most users like to watch

products, not necessarily for the purpose of buying something.

5.1.2 Evaluation Setting. In both datasets, we consider the product

metadata as item attributes. Following previous studies [14, 22], we

filter out the users with fewer than 10 interactions and the items

with fewer than 30 interactions in each domain. The statistics of the

datasets after preprocessing are shown in Table 1. In each domain,

we take 50% of the interaction records as the training set, 30% as the

validation set and 20% as the test set. Since we perform different

tasks on different datasets, we set up different evaluation metrics for

the two tasks. For rating prediction task, we adopt two widely used

metrics, namely Mean Squared Error (MSE) and Mean Absolute

Error (MAE). For click-through-rate prediction task, we adopt Area

Under Curve (AUC) and Logloss following existing works [12].

5.1.3 ComparisonModels. We adopt both single-domain and cross-

domain baseline models for comparison:

• BiasMF [24] is a simple and well-known method for single-

domain recommendation to improve the performance of SVD by

introducing systematic biases associated with users and items.

• FM [37] is a powerful single-domain framework for collabo-

rative filtering recommendation as an extension of a linear model

designed to capture interactions between features.

• Wide & Deep [9] is a widely used single-domain recommen-

dation method with jointly trained wide linear models and deep

neural networks to combine memorization and generalization.

• DeepFM [12] is a deep learning based single-domain rec-

ommendation method which combines factorization machines for

recommendation and deep learning for feature learning.

• CMF [40] is a multi-relation cross-domain learning approach

which jointly factorizes matrices of individual domains by sharing

user factors in different domains.

• Multi-View DNN [10] is a multi-learning framework for

cross-domain user modeling in recommendation system, which

maps two different views of the data into a shared view.

• CoNet [16] is the latest collaborative cross networks for cross-
domain recommendation, which can enable dual knowledge trans-

fer across domains by introducing cross connections.

Overall, our baselines have a good coverage of both single-

domain and cross-domain baselines. Note that our framework can

apply to various recommendation algorithms. In our experiments,

we select FM, Wide & Deep and DeepFM for extension. To repro-

duce the experiments, we present detailed parameter configuration

about baselines and our model in Appendix B.

5.2 Evaluation on Main Results
In this section, we perform the evaluation for cross-domain recom-

mendation task on both public and industry dataset.

5.2.1 Evaluation with Public Dataset. We report the performance

of different methods on rating prediction task with Amazon dataset

in Table 2. From the results, it can be observed that:

(1) Among the four single-domain recommendation baselines

(i.e., BiasMF, FM, Wide & deep, DeepFM), BiasMF performs worst

because it simply factorizes the user-item interaction, without mod-

eling the item attributes. FM outperforms BiasMF by modeling

context features. While Wide & Deep integrates linear models and

deep neural networks to model the interactions, which performs
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Table 2: Performance comparisons of different methods on public dataset. Smaller value is better.

Dataset Category Method

CD Movie Book

MSE MAE MSE MAE MSE MAE

Amazon

Single domain

BiasMF 0.9907 0.7783 1.0618 0.7329 0.9584 0.7722

FM 0.8563 0.6545 0.9728 0.7115 0.7958 0.6282

Wide & deep 0.8487 0.6458 0.9687 0.7028 0.7846 0.6110

DeepFM 0.8397 0.6397 0.9568 0.6914 0.7817 0.6096

Cross domain

CMF 1.0949 0.7054 1.0796 0.6944 0.9283 0.6465

Multi-View DNN 0.7958 0.6886 0.9437 0.6713 0.7636 0.6129

CoNet 0.7813 0.6719 0.9319 0.6628 0.7637 0.5636

FM+Our method 0.7741 0.6765 0.9263 0.6586 0.7581 0.5157

Wide & deep+Our method 0.7618 0.6598 0.9127 0.6519 0.7490 0.5111

DeepFM+Our method 0.7590 0.6528 0.9079 0.6479 0.7416 0.5058

Table 3: Performance comparisons of different methods on industry dataset. “↑" ( “↓") indicates larger (smaller) is better.

Dataset Category Method

Gouwuche Sousuo Shoucai

AUC(“↑") LogLoss(“↓") AUC(“↑") LogLoss(“↓") AUC(“↑") LogLoss(“↓")

Taobao

Single domain

BiasMF 0.6081 0.603 0.6381 0.572 0.6418 0.539

FM 0.6336 0.536 0.6943 0.519 0.6950 0.496

Wide & deep 0.6516 0.519 0.7149 0.490 0.7012 0.485

DeepFM 0.6579 0.518 0.7194 0.487 0.7164 0.480

Cross domain

CMF 0.6123 0.587 0.6450 0.553 0.6651 0.512

Multi-View DNN 0.7317 0.521 0.7328 0.469 0.6835 0.472

CoNet 0.7375 0.491 0.7839 0.429 0.7258 0.463

FM+Our method 0.7182 0.475 0.8005 0.397 0.7187 0.497

Wide & deep+Our method 0.7414 0.439 0.8119 0.389 0.7298 0.423

DeepFM+Our method 0.7424 0.412 0.8135 0.364 0.7316 0.421

better. DeepFM achieves the best performance because it specially

models neural feature interaction.

(2) Among the cross-domain recommendation baselines, CMF

performs worse than some single-domain methods because it does

not model the interactions between features. The other two base-

lines outperform all the single-domain baselines. However, they

only mitigate the bias in domains by fine-tuning in the target do-

main, without accurately determining the confounding factors con-

tained in the migrated information.

(3) Finally, it is obvious that our proposed framework performs

consistently better than all of the single-domain and cross-domain

baselines under different metrics. In particular, it largely improves

the three base models (i.e., FM, Wide&Deep and DeepFM). These

results show that our framework is effective to improve the per-

formance of cross-domain recommendation, and it is general to

apply various recommendation algorithms. Such advantages are

brought by the fact that we design a novel IPS estimator and learn

the propensity scores by three restrictions to debias the confounder

factors in domains.

5.2.2 Evaluation with Industry Dataset. As introduced in Section 5.1.1,
we conduct the evaluation with three industry datasets, namely

Gouwuche, Sousuo and Shoucai. The three datasets were collected

from the logs of deployed recommender systems from Mobile

Taobao and Tmall platforms. The main results comparing our pro-

posed method with baselines are presented in Table 3. Overall,

the experiment results are similar to the experiments on Amazon

dataset, which further demonstrates the effectiveness of our frame-

work. Additionally, the performances on the Sousuo dataset have

improved more obviously, possibly because there are more over-

lapped users on the Sousuo dataset. Our method improves the most,

which also shows that debiasing learning in our method is effective.

5.3 Method Analysis
In this section, we present more experiments and detailed analysis

of the proposed method.

5.3.1 Ablation Study. The major novelty of our proposed frame-

work is that it utilizes a novel IPS estimator and learns the propen-

sity scores with three restrictions, namely estimator-level restric-

tion, domain-level restriction and individual-level restriction. To

examine the contributions of these three restrictions, we test the

performance of three variants of the proposed framework based

on DeepFM by removing each restriction from the full framework.

Specifically, we consider the following variants for ablation study:
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• w/o estimator-level restriction: In this variant, we remove the

estimator-level restriction in Eq. (8).

• w/o domain-level restriction: In this variant, we remove the

domain-level restriction in Eq. (10).

• w/o individual-level restriction: In this variant, we remove the

individua-level restriction in Eq. (11).

Table 4: Ablation study of the proposed method in terms of
AUC. The best performances are marked bold on TAOBAO.

Method Gouwuche Sousuo Shoucai

Full 0.7424 0.8135 0.7316

w/o estimator-level 0.6815 0.7527 0.6834

w/o domain-level 0.7178 0.7736 0.6996

w/o individual-level 0.7327 0.7973 0.7251

We report the experimental results of our full model and these

variants in Table 4. As we can see, the performance of our full

model is better than all of these variants, which indicates that

the three restrictions are important for the final recommendation

performance. In particular, the performance of the variant without

estimator restriction is the worst one, showing that the relation

between user’s general preference and domain effect is important

for the propensity score learning.
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Figure 3: Performance of different embedding sizes (𝑘).

5.3.2 Parameter Sensitivity Study. We further investigate the influ-

ence of model parameters on the performance to verify its robust-

ness. We choose the best single-domain recommendation baseline

and the best cross-domain recommendation baseline for compari-

son. Due to the space limit, we report the results on Sousuo dataset

in Figure 3(a) and the results on Shoucai dataset in Figure 3(b).

These two figures present the results for tuning the size of user

and item attribute embeddings. We vary the dimension 𝑘 in a set

{16, 32, 64, 128, 256}. It can be seen that the performance improves

with the increase of 𝑘 and reaches the peak when 𝑘 = 64. The per-

formance of our model is consistently better than other baselines.

5.3.3 Evaluation on Overlapped Users. Intuitively, cross-domain

recommendation mainly helps improve the recommendation for

overlapped users who appear in multiple domains, since we can

derive a more comprehensive user preference with transferred user

information across domains. However, it is not clear whether a

Table 5: Evaluation on different user sets in terms of AUC.

Domain User set DeepFM CoNet Our method

Gouwuche

Overlap 0.6619 0.7563 0.7619

Unoverlap 0.6449 0.6904 0.7248

Sousuo

Overlap 0.7268 0.8036 0.8317

Unoverlap 0.7037 0.7538 0.8018

Shoucai

Overlap 0.7218 0.7402 0.7497

Unoverlap 0.7136 0.7098 0.7246

cross-domain approach would improve the recommendation for

non-overlapped users. Since our test sets contains both overlapped

and non-overlapped users, we further compare the performance

on different user sets. From Table 5, we can see that our method

outperforms the baselines on both overlapped and non-overlapped

user sets. A major reason is that our framework explicitly models

the attributes in mitigating the domain biases, so that it can also

leverage cross-domain information to improve the recommendation

performance for non-overlapped users.

5.3.4 Case Study. To better understand the learned general and

domain-specific preference, we present a case study in Table 6. We

present one sampled user and one sampled item. Both the user and

item are randomly selected from our Taobao dataset. We apply our

framework to the user-item pair. For this user, we learn the general

and domain-specific preference. For the item, we learn the attribute

embeddings. Next, we compute the cosine similarity between gen-

eral (or domain-specific) preference and attribute embeddings in

each domain. We further normalize the values between 0 and 1 with

min-max normalization. As shown in Table 6, the results with gen-

eral preference show that this user mainly likes the item on category
and brand. Furthermore, in Sousuo or Gouwuche, purchase-guided

domain setting is the major influencing factor, resulting in a high

match between users and categories. While in Shoucai, exploration-

guided domain setting is the major influence factor, leading to the

shift of user preferences to brand and price. These results show

that our framework is effective to mitigate the domain biases, and

better capture general and domain-specific preference.

Table 6: Attribute importance comparison for a sampled
user-item pair in three domains (FC = First Category, SC =
Second Category). The best two attributes are marked bold.

FC SC Brand Seller Price

General Preference 0.65 0.81 0.72 0.63 0.36

Sousuo 0.74 0.78 0.65 0.43 0.12

Gouwuche 0.62 0.71 0.56 0.29 0.18

Shoucai 0.64 0.73 0.86 0.65 0.78

6 CONCLUSIONS
In this paper, we presented a debiasing learning based cross-domain

recommendation framework with causal embedding. Our proposed
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framework contained a novel IPS estimator and three restrictions

for propensity score learning, namely restriction with estimator,

restriction in domain level and restriction in individual level. Our

framework is able to eliminate the biases produced in domains

and transfer the debiased user information to other domains for

recommendation. Extensive experiments on both public dataset and

industry dataset have demonstrated the superiority of the proposed

framework. Currently, we only deal with the selection bias produced

in different domains. As future work, we will consider how to

mitigate other biases like position bias and exposure bias.
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APPENDIX
We offer some reproducibility-related information as supplemen-

tary materials to help authors reproduce our method. The appendix

includes 1 page and is organized into two sections:

• Additional details for our method are presented in Appen-

dix A; and

• Additional details for our experiments are presented in Ap-

pendix B.

A ADDITIONAL DETAILS FOR OUR METHOD
A.1 Algorithm and Training
The parameters to learn in our model include the parameters for

the recommendation function in 𝑓 (𝒗𝑑𝑢 , 𝒗𝑑𝑗 ) denoted by Θ𝑓 and de-

biasing parameters {𝑝𝑢 𝑗𝑑 ,𝑾1,𝒘2,𝑾3, 𝑏1, 𝑏2} denoted as Θ𝑑 . We

learn Θ𝑓 by the proposed Inverse-Propensity-Scoring Estimator in

𝐸𝑞. (3). The propensity score and parameters in 𝐸𝑞. (7) are learned
by integrating the three loss terms in 𝐸𝑞. (8), 𝐸𝑞. (10) and 𝐸𝑞. (11):

𝐿 = 𝐿𝑜𝑠𝑠1 + 𝐿𝑜𝑠𝑠2 + 𝐿𝑜𝑠𝑠𝐿 . (15)

In each iteration, we first train the Θ𝑓 in each domain and then

train theΘ𝑑 across domains. Thewholemethod is trainedwith back-

propagation. The training algorithm is summarized in Algorithm 1.

Algorithm 1 The training algorithm for our proposed method.

1: Initialize parameters.

2: while not convergence do
3: for 𝑑 ∈ D do
4: Compute 𝑅𝐼𝑃𝑆 (𝑌 |𝑃);
5: Update parameters in 𝑓 with optimizer;

6: 𝒗𝑢,𝑑 =𝑾3 (𝑾1𝒗𝑑𝑢 +𝒘2𝑝𝑢 𝑗𝑑 + 𝑏1) + 𝑏2;

7: 𝑒𝑑
1
=

𝛿 (𝑓 (𝒗𝑑𝑢 ,𝒗𝑑𝑗 ),𝑦)
𝑝𝑢𝑗𝑑

;

8: 𝑒𝑑
2
= 𝛿 (𝑓 (𝒗𝑢,𝑑 , 𝒗𝑑𝑗 ), 𝑦);

9: end for
10: 𝒗∗𝑢 = 1/𝐷∑𝐷

𝑑=1
𝒗𝑢,𝑑 ;

11: 𝐿𝑜𝑠𝑠 = 𝐿𝑜𝑠𝑠1 + 𝐿𝑜𝑠𝑠2 + 𝐿𝑜𝑠𝑠𝐿 ;

12: Update parameters 𝑝𝑢 𝑗𝑑 ,𝑾1,𝒘2,𝑾3, 𝑏1, 𝑏2 with optimizer.

13: end while

A.2 Inference Details
In our framework, the number of dimensions for user embeddings

and item attribute embeddings is set to 64. The values of _𝑑 and 𝛼𝑑

are set to the multiplicative inverse of the number of samples in

corresponding domain. We use Adam optimizer [23] with learning

rate of 0.001 for optimization. The code used by our experiments is

implemented with PyTorch in Python 3.6.

B ADDITIONAL DETAILS FOR EXPERIMENTS
B.1 Baseline Implementation
Table 7 represents the parameter settings of different methods used

in our experiments.

Baselines Settings

BiasMF

Embed.-size=64, batch-size=1024,

Adam optimizer,

learning-rate=0.001

FM

Embed.-size=64, batch-size=1024,

Adam optimizer,

learning-rate=0.0001

Wide & Deep

Embed.-size=64, batch-size=1024,

Adam optimizer, dropout=0.5,

hidden-size=256, 128, 64,

learning-rate=0.0001

DeepFM

Embed.-size=64, batch-size=1024,

Adam optimizer, dropout=0.5

hidden-size=256, 128, 64,

learning-rate=0.0001

CMF

Embed.-size=64, batch-size=1024,

Adam optimizer,

learning-rate=0.0001

Multi-View DNN

Embed.-size=64, batch-size=1024,

Adam optimizer, dropout=0.5

hidden-size=256, 128, 64,32,

learning-rate=0.0001

CoNet

Embed.-size=64, batch-size=1024,

Adam optimizer, dropout=0.5

hidden-size=256, 128, 64,

learning-rate=0.0001

Table 7: Parameter settings of different baselines.
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